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i 1. Introduction to this project

= Heterogeneous dynamic spectrum access
(DSA) systems

= Flexi
= Flexi
= Flexi

D
D

D

e spectrum sensing/access strategies
e transmission parameters
e software implementations

= Coexistence of heterogeneous intelligent users

= Competition and cooperation - complex dynamics
- impact efficiency & fairness of spectrum access
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= Objective of this project

= Develop a framework for modeling and analyzing
coexistence behavior of heterogeneous DSA
systems
= Support new DSA techniques/systems development

= Employ thought-provoking methodologies from
theoretical ecology to study coexistence of
intelligent users
= Evolution of cooperation, population dynamic models

= Promote integration between wireless
communications and theoretical ecology



= Expected outcomes

= DSA analysis framework

= Developing techniques integrating Markov Model Bank,
evolutionary game theory, evolution of cooperation, etc

= Modeling and analyzing dynamic interactions among
different DSA strategies
= Spectrum-usage model stimulated by similar
population dynamic models in ecosystems
= Modeling and analyzing spectrum sharing of large DSA
systems
= A framework for DSA policy modeling and analysis

= Support policy design and optimization :



2. Major Results

= What is the best a DSA/CRN can do?

« Formulated sum-of-ratios linear fractional
programming (SoR-LFP) to derive theoretically
optimal CRN throughput

= A benchmark for evaluating the optimality of practical
DSA/CRN strategies

= What is the performance of practical CRN?

= Developed Markov Model Bank (MMB) to model
heterogeneous CRN and to analyze throughput

= Developed Network decomposition techniques for
feasible and efficient analysis
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2.1 System Model

= Consider CRN with I secondary users (SU)
and K channels

= Channel available probability 6,, SU offered load
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= What is the throughput of the CRN under
heterogeneous setting?

= Heterogeneous CRN performance analysis is
challenging
= Mostly done by simulation rather than analysis

= Limited analysis results exist for simplified &
homogeneous CRN, or for small CRN with a few
users only

=« Optimal benchmark performance is unknown



i 2.2 Optimal throughput

= Optimal power control for max sum-capacity

le log| 1+ Ah
= ZM Pih; +Ry

= Centralized optimization: non-convex, still a
challenge

= Distributed optimization: Iterative water-filling,
various game-theoretic solutions, etc
= We explore: sum-of-ratios linear fractional
programming (SoR-LFP)




= Assume SUs allocate powers optimally among
all channels under individual power constraint

= Basic equations for SU
= Signal, SNR, sum throughput
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= Formulation of centralized optimization

problem

R =
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s We find this can be treated as a variation of
SoR-LFP. Other variations include popular

metrics like
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= Sum-of-ratios linear fractional programming

|
max Zaio+ai1X1+"'+aiJXJ

Oar} T by 0 X+ -+ Dby X,
= A global optimization problem that has wide
applications, decades of research

= Generally non-convex. But there are some
algorithms to solve it.

« Great effort is still needed to revise/re-develop the
algorithms to solve our problems.
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4-ratio 4-variable example (0 < x. <1):
5.4+1.6x, +1.7X, +6.9%; + 2.3X,

T 8.7+1.1x, +8.2x, + 2.6%, +1.8x,
10+ 7.9%, +6X, + 7.5%; +9.1X,

" 5.8+9.6x +8.7x, +8X, + 2.6%,
0.8+3.1x, +2.6X, +4.5%; +1.5X%,

73T T 551 0.8x, + 4.3x, +1.5x,

4.4 4+ 5.3X, +6.5X, +0.8x, +8.3X,
T T A+ 7T, + 4%, +9.1x, + 1.4,

1
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4
max Y _log,(1+y,) =5.4
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4
max | [log,(1+;)=1.4

i=1

Example: 4 users access 1
channel
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X1, X5, Xg, X, :
[1’213'4] i=1

[X1,%X9,%3,%4] i1

Optimal solution: Optimal solution:
[X., %,, X5, %,1=[0,0,0,1] | [x,, X, X5, X,]=[0,0,1,1]

¥, =6.75

R=3.39
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= Our current algorithm can work with a large
number of variables, but with a few ratios only
= Need to improve convergence if there are more

ratios y |
Simulation of two-way relaying: .’ | =
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2.3 Modeling CRN and Gt dve
i Analyzing Throughput

= Model CRN's four basic workking modes
« Spectrum sensing: duration T, SNR threshold T

= Spectrum access (data packet transmission):
duration T, max transmission power P,
« Idling: duration T ¢
oL S
= Channel switching: duration ‘ci

Useri: (shaded: spectrum sensing, duration T si )

N Q\: . channel
g Data Packet \\ waiting switching
duration Tj; duration T, ; duration T
User j: : time

ch Packet T d

Channel Switching \§ Data
N
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= Markov model bank (MMB)

= N Markov chains: A separate chain for each user
= 3K + 1 states in each separated Markov chain

=« Users & chains connected implicitly by
transitional probability qs,

dix 1-a. channel k

channel 1

qs : prob. of channel sensed available
Z; . - prob. of channel selection

7 < prob. of spectrum sensing

7! - prob. of data transmission

! prob. of ideling
7, - prob. of channel switching
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= Essential idea of MMB

= Reduce complexity of Markov chains, leave
complexity to transitional probability analysis
= Convenient for modeling heterogeneous systems
= Feasible mutual interference analysis
= Efficient network decomposition

= Steady-state probability

A a, || X 0
" : : _ : c Zi,k
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= General throughput expression

2N1
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= Complexity is high since all users (i =1...1) and

channels (k = 1 ...K) are coupled together
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= Apply network decomposition for efficiency

= Spatial decoupling: separate weak interferer from
strong interferer, like CSMA

=« Channel decoupling: users in different channels
become uncorrelated, via translation of z; , to x;

K
Ri — Zci,kqi,kxi,k’
k=1

1 N
Qv =— H (1_quj,kxj,k) Removed

A oL

qje

= User decoupling: each user’s throughput can be
evaluated individually, via invariance property

Q=
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i 3. Simulations

Random network with distance-based path-loss model. Random
PU activity in K white-space channels.

25 —¥— Analysis Results (K=2) 70 '___,_—_—:_'_‘g
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1. Analysis results are verified as accurate.
2. Gap between CRN throughput and optimized throughput.
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Random network. Three access strategies: random, fixed order,

potential game (minimize interference).
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1. Coexistence reduces throughput of random-access strategies.
2. Unfairness is more severe for larger networks.
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i 4. Conclusions

= This project is to develop a framework to
study the coexistence of heterogeneous DSA
systems, inspired by theoretical ecology.

= We developed Markov Model Bank (MMB) to
model and analyze CRN,

= MMB allows network decomposition for efficient
analysis.
= We formulated Sum-of-Ratios Linear
Fractional Programming (SoR-LFP) for
benchmark optimal CRN throughput.
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